试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图, 分别是边长为4的正方形 四条边上的点,且 . 那么四边形 的面积的最小值是{#blank#}1{#/blank#}
因为(x﹣2)2≥0,
所以(x﹣2)2+1≥1,
当x=2时,(x﹣2)2+1=1,
因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.
通过阅读,解下列问题:
解:x2+4x+5=x2+4x+22﹣22+5=(x+2)2+1
∵(x+2)2≥0
∴(x+2)2+1≥1
当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,
∴x2+4x+5的最小值是1.
请你根据上述方法,解答下列各题:
(1)直接写出:(x﹣1)2﹣2的最小值为 .
(2)求出代数式x2﹣10x+33的最小值;
(3)若﹣x2+7x+y+12=0,求x+y的最小值.
试题篮