试题 试卷
题型:单选题 题类:常考题 难易度:困难
如图,在正方形ABCD中,点E是AD的中点,连接BE、CE,点F是CE的中点,连接DF、BF,点M是BF上一点且,过点M做MN⊥BC于点N,连接FN.下列结论中: ①BE=CE;②∠BEF=∠DFE;③MN=AB;④.
其中正确结论的个数是( )
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为 ,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
①N是GM的黄金分割点 ②S1=S4③ .
试题篮