阅读下列材料并解答问题:我们知道
的几何意义是在数轴上数
对应的点与原点的距离:
,也就是说,
表示在数轴上数
与数0对应点之间的距离;
这个结论可以推广为
表示在数轴上数
和数
对应的点之间的距离;
例1解方程
,容易看出,在数轴上与原点距离为2的点对应的数为
,即该方程的解为
.
例2解不等式
,如图,在数轴上找出
的解,即到1的距离为2的点对应的数为
,3,则
的解集为
或
.
![](http://tikupic.21cnjy.com/56/76/567655f8ae40e298c4c3a15d5671e7a3.png)
例3解方程
由绝对值的几何意义知,该方程表示求在数轴上与1和
的距离之和为5的对应的
的值.在数轴上,1和
的距离为3,满足方程的
对应的点在1的右边或
的左边,若
对应的点在1的右边,由下图可以看出
;同理,若
对应的点在
的左边,可得
,故原方程的解是
或
.
![](http://tikupic.21cnjy.com/0b/f8/0bf811e85394fc270c31acae31739018.png)
回答问题:(只需直接写出答案)
①解方程 ![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
②解不等式 ![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%89%A5%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
③解方程 ![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)