试题

试题 试卷

logo

题型:实践探究题 题类: 难易度:困难

山西省2024年中考数学试卷

综合与实践

问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.

方案设计:如图米,AB的垂直平分线与抛物线交于点 , 与AB交于点 , 点是抛物线的顶点,且米.欣欣设计的方案如下:

第一步:在线段OP上确定点 , 使 . 用篱笆沿线段AC,BC分隔出区域,种植串串红;

第二步:在线段CP上取点(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用䈑笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.

方案实施:学校采用了欣欣的方案,在完成第一步区域的分隔后,发现仅剩6米蓠笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为轴,OP所在直线为轴建立平面直角坐标系,请按照她的方法解决问题:

(1)、在图2中画出坐标系,并求抛物线的函数表达式;
(2)、求6米材料恰好用完时DE与CF的长;
(3)、种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在AC,BC上.直接写出符合设计要求的矩形周长的最大值.
举一反三
返回首页

试题篮