题型:实践探究题 题类: 难易度:困难
山西省2024年中考数学试卷
问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.
方案设计:如图米,AB的垂直平分线与抛物线交于点 , 与AB交于点 , 点是抛物线的顶点,且米.欣欣设计的方案如下:
第一步:在线段OP上确定点 , 使 . 用篱笆沿线段AC,BC分隔出区域,种植串串红;
第二步:在线段CP上取点(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用䈑笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.
方案实施:学校采用了欣欣的方案,在完成第一步区域的分隔后,发现仅剩6米蓠笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为轴,OP所在直线为轴建立平面直角坐标系,请按照她的方法解决问题:
x | … | ﹣1 | 0 | 2 | 4 | … |
y1 | … | 0 | 1 | 3 | 5 | … |
x | … | ﹣1 | 1 | 3 | 4 | … |
y2 | … | 0 | ﹣4 | 0 | 5 | … |
当y2>y1时,自变量x的取值范围是( )
试题篮