试题
试题
试卷
登录
注册
当前位置:
首页
题型:综合题
题类:
难易度:普通
浙江省宁波市鄞州2023年八年级下学期期中联考数学试卷
如图,在矩形ABCD中,点E,F分别在AD,BC上,且AE=CF.
(1)、
求证:四边形BFDE是平行四边形:
(2)、
若AB=2,AD=4,四边形BFDE是菱形,求AE长.
举一反三
下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?( )
已知直角三角形的两直角边长分别为
和
,则斜边的长为{#blank#}1{#/blank#}.
如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是 ( )
如图,锐角△ABC中,AD是高,E,F分别是AB,AC中点,EF交AD于G,已知GF=1,AC= 6,△DEG的周长为10,则△ABC的周长为( )
如图,⊙
和⊙
相交于A、B两点,
与AB交于点C,
的延长线交⊙
于点D,点E为AD的中点,AE=AC,联结
.
清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,对“三边长为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现代的数学语言表述是:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其边长的方法为:第一步:
=
;第二步:
=k;第三步:分别用3,4,5乘以
,得三边长”.
返回首页
相关试卷
浙江省宁波市镇海区仁爱中学2024-2025学年上学期八年级数学期末试卷
贵州省安顺市开发区2024-2025学年八年级上学期期末考试数学试题
山东省潍坊市2024-2025学年七年级上学期期末数学试卷
广西壮族自治区梧州市2024-2025学年八年级上学期第一次月考考试数学试题
山东省青岛市市北区2024—2025学年上学期七年级数学期末试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册