试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:常考题
难易度:困难
内蒙古通辽市2016-2017学年八年级下学期数学期末考试试卷
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S
1
, S
2
, S
3
, 若S
1
+S
2
+S
3
=10,则S
2
的值是
.
举一反三
中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S
1
, S
2
, S
3
, 若S
1
+S
2
+S
3
=18,则正方形EFGH的面积为( )
如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.
我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为{#blank#}1{#/blank#}.
如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC 中,∠ACB=90°,若 AC=b,BC=a,请你利用这个图形解决下列问题:
如图,在
中,内角
所对的边分别为
.
返回首页
相关试卷
浙江省宁波市镇海区仁爱中学2024-2025学年上学期八年级数学期末试卷
贵州省安顺市开发区2024-2025学年八年级上学期期末考试数学试题
山东省潍坊市2024-2025学年七年级上学期期末数学试卷
广西壮族自治区梧州市2024-2025学年八年级上学期第一次月考考试数学试题
山东省青岛市市北区2024—2025学年上学期七年级数学期末试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册