试题 试卷
题型:综合题 题类:常考题 难易度:普通
浙江省衢州市2018-2019学年八年级上学期数学期中考试试卷
勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都是矩形KLMJ的边上,则矩形KLMJ的面积为( )
勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.
由图1可以得到(a+b)2=4× ab+c2
整理,得a2+2ab+b2=2ab+c2 .
所以a2+b2=c2 .
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.
试题篮