试题 试卷
题型:综合题 题类:常考题 难易度:普通
浙江省杭州市2020-2021学年九年级上学期期中考试数学试卷
①求AH的长;
②若DB∥OA,求DB的长.
如图,在等腰直角三角形ABC中,点O是斜边AC的中点,点P为斜边AC上的点,点D为直角边BC上的点,且PB=PD,DE⊥AC于E,BO与PD相交于M.
(1)请说明BO=PE的理由;
(2)若CE=x,AC=8,△ABP的面积是y,请写出y与x的函数关系式(不考虑x的取值范围),并画出这个函数的完整图象;
(3)在(2)的条件下,函数图象与x轴的交点是D,与y轴的交点是A点,平面直角坐标系原点是O点,请画出∠OAB,使射线AB交x轴于B点,使射线AD平分∠OAB,若⊙O′经过点A、点D,且圆心O′点在AB上,请说明“OB为⊙O′的切线”的理由.
图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.
(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.
(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.
(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.
试题篮