试题 试卷
题型:填空题 题类:常考题 难易度:普通
【d】四川省成都市武侯区2020-2021学年八年级下学期数学期中考试试卷
如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(即OA+OB+OC,计算时视管道为线,中心O为点)是 ( )
如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2 , AD=2,则四边形ABCD的面积是( )
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)(1)求过A、B、C三点的抛物线解析式.(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.①求S与t的函数关系式.②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
已知与是反比例函数图象上的两个点. (1)求m和k的值 (2)若点C(-1,0),连结AC,BC,求△ABC的面积 (3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.
试题篮