试题 试卷
题型:解答题 题类:常考题 难易度:普通
2016-2017学年四川省成都市九校联考高二下学期期中数学试卷(文科)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点E (0,﹣2 ) 的直线l与C相交于P,Q 两点,求△OPQ面积的最大值.
如图,已知P(x0 , y0)是椭圆C: =1上一点,过原点的斜率分别为k1 , k2的两条直线与圆(x﹣x0)2+(y﹣y0)2= 均相切,且交椭圆于A,B两点.
已知椭圆M: 的右焦点F的坐标为(1,0),P,Q为椭圆上位于y轴右侧的两个动点,使PF⊥QF,C为PQ中点,线段PQ的垂直平分线交x轴,y轴于点A,B(线段PQ不垂直x轴),当Q运动到椭圆的右顶点时, .
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若S△ABO:S△BCF=3:5,求直线PQ的方程.
已知椭圆E: 的左、右焦点分别为F1 , F2 , 左、右顶点分别为A,B.以F1F2为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为 .设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点为O.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别在直线x=﹣2和x=2上,且AF1⊥BF1 .
(ⅰ)当△ABF1为等腰三角形时,求△ABF1的面积;
(ⅱ)求点F1 , F2到直线AB距离之和的最小值.
试题篮