题型:解答题 题类:常考题 难易度:普通
独立性检验
期末分数段 | (0,60) | [60,75) | [75,90) | [90,105) | [105,120) | [120,150] |
人数 | 5 | 10 | 15 | 10 | 5 | 5 |
“过关”人数 | 1 | 2 | 9 | 7 | 3 | 4 |
分数低于90分人数 | 分数不低于90分人数 | 合计 | |
过关人数 | |||
不过关人数 | |||
合计 |
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 |
k | 2.072 | 2.706 | 3.841 | 5.024 |
.
优秀 | 非优秀 | 总计 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
附:x2=
P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
则有( )的把握认为环保知识是否优秀与性别有关.
不常喝 | 常喝 | 合计 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合计 | A | B | 100 |
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
男 | 女 | 总计 | |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(Ⅰ)从这60名男观众中按对《壹周•立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱《壹周•立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱《壹周•立波秀》节目的概率.
p(k2≥k0 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
附:临界值表参考公式:K2= ,n=a+b+c+d.
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
|
A类 |
B类 |
C类 |
男生 |
x |
5 |
3 |
女生 |
y |
3 |
3 |
附: .
| 0.10 | 0.05 | 0.01 |
| 2.706 | 3.841 | 6.635 |
试题篮