试题 试卷
题型:综合题 题类:常考题 难易度:普通
二次函数的三种形式
如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(-2,10),对称轴AB交x轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.(1)求抛物线的解析式;(2)若点D′恰好落在轴上的点(0,6)时,求此时D点的坐标;(3)直线CD′交对称轴AB于点F,①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值;②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值,若不存在请说明理由.
如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.
如图,在平面直角坐标系xOy中,抛物线W的函数表达式为y=-x2+2x+3,抛物线W与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,它的顶点为D,直线l经过A、C两点.
x
…
﹣1
0
1
2
y
﹣4
﹣2
8
试题篮