试题 试卷
题型:填空题 题类:常考题 难易度:普通
2015-2016学年度下学期期末七年级数学测试卷
如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF
证明:∵∠1=∠2()
∠1=∠3( 对角线相等)
∴∠2=∠3()
∴∥()
∴∠C=∠ABD()
又∵∠C=∠D(已知)
∴∠D=∠ABD()
∴AC∥DF()
(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由.
(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的位置关系?并说明理由.
如图,不能判定AB∥DF的是( )
如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=78°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转{#blank#}1{#/blank#}
试题篮