试题 试卷
题型:填空题 题类:常考题 难易度:普通
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是{#blank#}1{#/blank#} .
如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1 , b1 , c1是常数)与y=a2x2+b2x+c2(a2≠0,a2 , b2 , c2是常数)满足a1+a2=0,b1=b2 , c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+3x﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2 , 就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
试题篮