试题 试卷
题型:填空题 题类:真题 难易度:困难
观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.
如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1 , 连结BE1交CD1于D2;过D2作D2E2⊥AC于E2 , 连结BE2交CD1于D3;过D3作D3E3⊥AC于E3 , …,如此继续,可以依次得到点D4 , D5 , …,Dn , 分别记△BD1E1 , △BD2E2 , △BD3E3 , …,△BDnEn的面积为S1 , S2 , S3 , …Sn . 则Sn为( )
毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形
几何点数
层数
三角形数
正方形数
五边形数
六边形数
第一层几何点数
1
第二层几何点数
2
3
4
5
第三层几何点数
7
9
…
第六层几何点数
第n层几何点数
求第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.
观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为{#blank#}1{#/blank#} (用含n的代数式表示).
如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”( )
如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A( ,0),B(0,2),则点B2016的坐标为{#blank#}1{#/blank#}.
试题篮