试题 试卷
题型:解答题 题类:常考题 难易度:普通
四川省泸州市2018-2019学年高三上学期理数第一次教学质量诊断性考试试卷
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
(Ⅰ)求证:BP⊥CE;
(Ⅱ)求二面角B﹣PC﹣D的余弦值.
如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.
试题篮