北师大版初中数学八年级上册一次函数压轴题

修改时间:2019-08-07 浏览次数:1181 类型:复习试卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、综合题

  • 1.

    如图,直线L: 与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。

    (1) 求A、B两点的坐标;

    (2) 求△COM的面积S与M的移动时间t之间的函数关系式;

    (3) 当t为何值时△COM≌△AOB,并求此时M点的坐标。

  • 2. 在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB上的一个动点,记点P关于y轴对称的点为P′.

    (1)

    当b=3时(如图1),

    ①求直线AB的函数表达式.

    (2) ②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标

    (3)

    若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.

    (4)

    当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b=

  • 3.

    直线y=﹣ x+3和x轴、y轴的交点分别为B、C,点A的坐标是(﹣ ,0),另一条直线经过点A、C.

    (1) 求线段AC所对应的函数表达式;

    (2) 动点M从B出发沿BC运动,速度为1秒一个单位长度.当点M运动到C点时停止运动.设M运动t秒时,△ABM的面积为S.

    ①求S与t的函数关系式;

    ②当t为何值时,S= SABC , (注:SABC表示△ABC的面积),求出对应的t值;

    ③当t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标,若不存在,请说明理由.

  • 4. 如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣ x交于点P.直线l3:y=﹣ x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.

    (1) 点A的坐标是,点B的坐标是,点P的坐标是
    (2) 将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;
    (3) 求△PQR的面积.
  • 5.

    如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).

    (1) 求对角线AB所在直线的函数关系式;

    (2) 对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;

    (3) 若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.

试题篮