河南省商丘市梁园区李庄乡2018-2019学年八年级下学期数学期末考试试卷

修改时间:2024-07-13 浏览次数:196 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、河南省商丘市梁园区李庄乡2018-2019学年八年级下学期数学期末考试试卷

  • 1. 若 是最简二次根式,则a的值可能是(   )
    A . -2 B . 2 C . D . 8
  • 2. 下列四组线段中,可以构成直角三角形的是(  )

    A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D . 1, , 3
  • 3. 下列计算正确的是(    )
    A . B . 2 C . 2=2 D . =3
  • 4. 实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为(  )
    A . 4,5 B . 5,4 C . 4,4 D . 5,5
  • 5. 能判定四边形ABCD是平行四边形的是(    )
    A . AD//BC,AB=CD B . ∠A=∠B,∠C=∠D C . ∠A=∠C,∠B=∠D D . AB=AD,CB=CD
  • 6. 已知 是一次函数 的图象上的两个点,则 的大小关系是(    )
    A . B . C . D . 不能确定
  • 7. 如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于(  )

    A . 112.5° B . 120° C . 135° D . 145°
  • 8. 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,若点A在数轴上表示的数是-1,则对角线AC、BD的交点在数轴上表示的数为(   )

    A . 5.5 B . 5 C . 6 D . 6.5
  • 9. 如图在平面直角坐标系 中若菱形ABCD的顶点 的坐标分别为 ,点D在y轴上,则点C的坐标是(    )

    A . B . C . D .
  • 10. 如图①,正方形ABCD中,点P以每秒2cm的速度从点A出发,沿 的路径运动,到点C停止.过点P作 与边AD(或边CD)交于点 的长度 与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时, 的面积为(    )

     

    A . B . C . D .
  • 11. 若 有意义,则 的取值范围是
  • 12. 下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
     

    队员1

    队员2

    队员3

    队员4

    平均数 (秒)

    51

    50

    51

    50

    方差 (秒

    3.5

    3.5

    14.5

    15.5

    根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择

  • 13. 将直线y=2x向下平移2个单位,所得直线的函数表达式是

  • 14. 如图, 的周长为26,点 都在边 上, 的平分线垂直于 ,垂足为点 的平分线垂直于 ,垂足为点 ,若 ,则 的长为.

  • 15. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点 B 处,当△ CEB 为直角三角形时,BE的长为.

  • 16. 计算:
    (1)
    (2)
  • 17. 如图,平行四边形 中,点 分别在 上,且 相交于点 ,求证:

  • 18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.

    (1) 使三角形三边长为3,
    (2) 使平行四边形有一锐角为45°,且面积为4.
  • 19. 在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.

    (1) 这次调查获取的样本容量是.(直接写出结果)
    (2) 这次调查获取的样本数据的众数是,中位数是.(直接写出结果)
    (3) 若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
  • 20. A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中 表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:

    (1) 表示乙离开A地的距离与时间关系的图像是(填 );

    甲的速度是km/h;乙的速度是km/h.

    (2) 甲出发后多少时间两人恰好相距5km?
  • 21. 将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,

    (1) 试判断四边形DHBG为何种特殊的四边形,并说明理由;
    (2) 若AB=8,AD=4,求四边形DHBG的面积.
  • 22. 为迎接:“国家卫生城市”复检,某市环卫局准备购买AB两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.
    (1) 求每个A型垃圾箱和B型垃圾箱各多少元?
    (2) 该市现需要购买AB两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.

    ①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;

    ②当买A型垃圾箱多少个时总费用最少,最少费用是多少??

  • 23. 如图,在平面直角坐标系中,直线l1 分别与x轴、y轴交于点B、C,且与直线l2 交于点A.

    (1) 求出点A的坐标
    (2) 若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式
    (3) 在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

试题篮