湖南省长沙市2020-2021学年中考数学模拟试卷

修改时间:2021-04-07 浏览次数:334 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 的相反数是(   )
    A . B . C . D .
  • 2. 下列图形中,既是轴对称图形又是中心对称图形的是(   )
    A . B . C . D .
  • 3. 太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为(  )
    A . B . C . D .
  • 4. 下列运算正确的是(    )
    A . B . C . D .
  • 5. 已知反比例函数的解析式为 ,则a的取值范围是   
    A . B . C . D .
  • 6. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离 ,那么该建筑物的高度 约为(    )

    A . B . C . D .
  • 7. 不等式组 的解集在数轴上的表示是(  )
    A . B . C . D .
  • 8. 在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 .和 ,则该袋子中的白色球可能有(  )
    A . 6个 B . 16个 C . 18个 D . 24个
  • 9. 广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产 台新能源汽车,依题意得(  )
    A . B . C . D .
  • 10. 将一条两边沿平行的纸带如图折叠,若∠1=62°,则∠2等于(   )

    A . 62° B . 56° C . 45° D . 30°
  • 11. 二次函数yax2+bx+ca≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①2a+b=0;②9a+c>3b;③若点A(﹣3,y1)、点B(﹣ y2)、点Cy3)在该函数图象上,则y1y3y2:④若方程ax2+bx+c=﹣3(a≠0)的两根为x1x2 , 且x1x2 , 则x1<﹣1<3<x2;⑤mam+b)﹣ba . 其中正确的结论有(   )

    A . 1个 B . 2个 C . 3个 D . 4个
  • 12. 在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1 , 第二次移动到点A2 , 第n次移动到点An , 则点A2020的坐标是(    )

    A . (1010,0) B . (1010,1) C . (1009,0) D . (1009,1)

二、填空题

  • 13. 某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按 的比例确定个人的测试成绩,得分最高者被录取,此时将被录取(填“甲”或“乙”).

    得分/项目

    能力

    技能

    学业

    88

    84

    64

    87

    80

    77

  • 14. 甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球
  • 15. 一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是度.
  • 16. 在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是.(填序号)

    ①AC⊥DE;② = ;③CD=2DH;④ =

三、解答题

  • 17. 计算:(﹣ ﹣2+(π﹣3)0+|1﹣ |+tan45°
  • 18. 先化简:(1﹣ )• ,再从1,2,3中选取的一个合适的数代入求值.
  • 19. 已知平行四边形ABCD.

    (1) 尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
    (2) 在(1)的条件下,求证:CE=CF.
  • 20.

    某市育才中学开展“中国梦•读书梦”读书活动,以提升青少年的阅读兴趣.八(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).已知八(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:

    (1)八年(1)班有多少名学生;

    (2)补全直方图;

    (3)除八年(1)班外,八年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;

    (4)求该年级每天阅读时间不少于1小时的学生有多少人?

     

  • 21. 如图,AB为⊙O直径,C为⊙O上一点,点D是 的中点,DE⊥AC于E,DF⊥AB于F.

    (1) 判断DE与⊙O的位置关系,并证明你的结论;
    (2) 若OF=4,求AC的长度.
  • 22. 为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.
    (1) 求这批赈灾物资运往甲、乙两县的数量各是多少吨?
    (2) 若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?
    (3) 已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:


    A地

    B地

    C地

    运往甲县的费用(元/吨)

    220

    200

    200

    运往乙县的费用(元/吨)

    250

    220

    210

    为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司

    承担运送这批赈灾物资的总费用最多是多少?

  • 23. 如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.

    (1) 求证:BD2=AD•CD;
    (2) 若CD=6,AD=8,求MN的长.
  • 24. 我们定义:如图1,抛物线y=ax2+bx+c (a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2 , 则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点。

    (1) 求抛物线y=x2-4x+3的顶点坐标,判断它是不是该抛物线的勾股点,并说明理由;
    (2) 已知抛物线C: y=-a(x+1)(x-m-1)(a≠0)与x轴交于A,B两点,点P(4,3)是抛物线C的勾股点,求m的值;
    (3) 如图2,试判断抛物线y=ax2+bx(a<0)可能存在几个勾股点,并求出相对应的b的取值范围。
  • 25. 如图,⊙O中,FG,AC是直径,AB是弦,FG⊥AB,垂足为点P,过点G的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为

    (1) 分别求出线段AP,CB的长;
    (2) 如果0E=5,求证:DE是⊙O的切线;
    (3) 如果tan∠E= ,求DE的长.

试题篮