江西省吉安市峡江县2020-2021学年九年级上学期数学期末试卷

修改时间:2024-07-13 浏览次数:170 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 下列是关于 的一元二次方程的是(    )
    A . B . C . D .
  • 2. 在Rt△ABC中,∠C=90°,AB=6,AC=4,则cosA的值是( )
    A . B . C . D .
  • 3. 如图所示,将一个正方体切去一个角,则所得几何体的主视图为(    )

    A . B . C . D .
  • 4. 如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A,B,E在x轴上,若OA=2,则点G的坐标为(    )

    A . (3,6) B . (4,8) C . (6,12) D . (6,10)
  • 5. 如图,△ABC中,∠BAC=90°,AB=8,将△ABC沿直线BC向右平移,得到△EDF,连接AD,若四边形ACFD为菱形,EC=4,则平移的距离为(    )

    A . 4 B . 5 C . 6 D . 8
  • 6. 对于抛物线 ,下列说法错误的是(    )
    A . ,则抛物线的顶点在y轴上 B . 若抛物线经过原点,则一元二次方程 必有一根为0 C . ,则抛物线的对称轴必在y轴的左侧 D . 若顶点在x轴下方,则一元二次方程 有两个不相等的实数根

二、填空题

三、解答题

  • 13.   
    (1) 解方程:
    (2) 计算:4sin45º·cos60º-3tan30º.
  • 14. 如图,在Rt△ABC中,∠C=90˚,tanA ,BC=6,求AC的长和sinA的值.

  • 15. 如图,放映幻灯时,通过光源A,把幻灯片上的图形DE放大到屏幕BC上,若光源A到幻灯片DE的距离AE长为20cm,幻灯片DE到屏幕BC的距离EC长为40cm,且幻灯片中的图形ED的高度为6cm,求屏幕上图形BC的高度.

  • 16. 如图是由两个等腰直角三角形组合的图形,请分别在图1和图2中,仅用无刻度的直尺按要求画图.

    (1) 在图①中,作出AD的中点;
    (2) 在图②中,△ABC与△DEF相似比为2:3,BC=2CE,作出BF的垂直平分线.
  • 17. 把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.

    (1) 从中随机抽取一张牌是黑桃的概率是多少?
    (2) 从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.
  • 18. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),求当矩形ABCD的面积最大时AB的长.

  • 19. 已知关于x的一元二次方程 .
    (1) 若方程的两根之积为-5,求m的值;
    (2) 若方程 有两个不相等的实数根,试判断另一个关于x的一元二次方程 的根的情况.
  • 20. 如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂 长为 灯翠 长为 ,底座 厚度为 根据使用习惯,灯臂 的倾斜角 固定为

    (1) 当 转动到与桌面平行时,求点 到桌面的距离;
    (2) 在使用过程中发现,当 转到至 时,光线效果最好,求此时灯罩顶端 到桌面的高度(参考数据: ,结果精确到个位).
  • 21. 如图,△ABC中,AB=AC=6,BC=4,点D在AB上.

    (1) 当△ABC∽△CBD时,求BD的长;
    (2) 在(1)中的CD是否平分∠ACB?如果平分,说明理由;如果不平分,利用备用图,画出∠ACB的平分线CD,并求BD的长.
  • 22. 矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y= (k>0)的图象与边AC交于点E.


    (1) 当点F运动到边BC的中点时,求点E的坐标;
    (2) 连接EF,求∠EFC的正切值;
    (3) 如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
  • 23. 如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2 , E点的运动时间为x秒.

    (1) 求证:CE=EF;
    (2) 求y与x之间关系的函数表达式,并写出自变量x的取值范围;
    (3) 求△BEF面积的最大值.

试题篮