修改时间:2024-07-12 浏览次数:556 类型:期末考试
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.
通过证明△ ADC ≌△ ABE ,得到DC=BE;
如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH= BD,同理可得FG∥BD,FG= BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;
拓展应用
①如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
试题篮