人教版数学九年级上册第25章 25.2用列举法求概率 同步练习

修改时间:2017-12-23 浏览次数:541 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球的概率为      (     )

    A . B . C . D .
  • 2. 一个布袋里装有 个只有颜色不同的球,其中 个红球, 个白球.从布袋里摸出 个球,记下颜色后放回,搅匀,再摸出 个球,则两次摸到的球都是红球的概率是(   )

    A . B . C . D .
  • 3. 如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为(   )

    A . B . C . D .
  • 4. 如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为(   )

    A . B . C . D .
  • 5. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是(   )

    A . B . C . D .
  • 6. 甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是(   )

    A . B . C . D .
  • 7. 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为(   )
    A . B . C . D .
  • 8. 某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是(   )
    A . B . C . D .
  • 9. 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是(   )
    A . B . C . D .
  • 10. 三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为(   )
    A . B . C . D .
  • 11. 在一个不透明的口袋中,装有a个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后放回口袋中,摸到黄球的概率是0.2,则a的值是(   )
    A . 16 B . 20 C . 25 D . 30
  • 12. 小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为(   )

    A . B . C . D .

二、填空题

  • 13. 三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为

  • 14. 从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是
  • 15. 如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是

  • 16. 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y= 图象上的概率是
  • 17. 一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是

三、解答题

  • 18. 甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?
  • 19. 2017•通辽)小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.

四、综合题

  • 20. 从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.
    (1) 写出该点所有可能的坐标;
    (2) 求该点在第一象限的概率.
  • 21. 某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.

    请根据图中信息,解答下列问题:

    (1) 参加初赛的选手共有名,请补全频数分布直方图;
    (2) 扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?
    (3) 学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
  • 22. 为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:

    (1) 求此次抽查的学生人数;
    (2) 将图2补充完整,并求图1中的x;
    (3) 现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)
  • 23. 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩.请你根据下面回答者对甲、乙两人回答的内容进行分析,

    (1) 列举出这四人的名次排列所有可能出现的不同情况.
    (2) 求甲排在第一名的概率?
  • 24. 某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

    (1) 这次被调查的学生共有人;
    (2) 请你将条形统计图补充完成;
    (3) 在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
  • 25.

    如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.

    (1) 从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;

    (2) 小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).

试题篮