河南省2016-2017学年中考押题数学考试试卷(二)

修改时间:2021-05-20 浏览次数:1045 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. ﹣3的绝对值是(   )
    A . B . C . ﹣3 D . 3
  • 2. 2016年3月9日,谷歌人工智能ALPHAGO在与韩国棋手李世石的人机大战中获胜,震惊世界,据资料记载,人工智能ALPHAGO的计算能力达到每秒275万亿次,将275万亿用科学记数法表示为(   )

    A . 275×1012 B . 2.75×1012 C . 2.75×1013 D . 2.75×1014
  • 3. 如图所示,该几何体的俯视图是(   )

    A . B . C . D .
  • 4. 下列运算正确的是(   )
    A . ﹣(﹣a+b)=a+b B . 3a3﹣3a2=a C . (x62=x8 D . 1÷( 1=
  • 5. 如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为(   )

    A . 80° B . 90° C . 100° D . 102°
  • 6. 如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为(   )

    A . 2 B . 3 C . 4 D . ﹣4
  • 7. 已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是(   )
    A . ﹣1 B . ﹣1或5 C . 5 D . ﹣5
  • 8. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数 (单位:分)及方差s2如表所示:

    7

    8

    8

    7

    s2

    1

    1.2

    1

    1.8

    如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是(   )

    A . B . C . D .
  • 9. 从﹣3,﹣1, ,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之和是(   )
    A . ﹣2 B . ﹣3 C . D .
  • 10.

    如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1 , B2 , B3 , …,则B2017的坐标为(   )

    A . (1345,0) B . (1345.5, C . (1345, D . (1345.5,0)

二、填空题

  • 11. 计算:(﹣ 2+(﹣2017)0=
  • 12. 在一个不透明的口袋中装有若干只有颜色不同的球,如果口袋中装有3个红球,且摸出红球的概率为 ,那么袋中共有个球.
  • 13. 若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为
  • 14. 如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为

  • 15. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为

三、解答题

  • 16. 先化简,再求值: ,其中x=3tan30°+1.
  • 17. 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

    成绩x/分

    频数

    频率

    50≤x<60

    10

    0.05

    60≤x<70

    30

    0.15

    70≤x<80

    40

    n

    80≤x<90

    m

    0.35

    90≤x≤100

    50

    0.25

    请根据所给信息,解答下列问题:

    (1) m=,n=
    (2) 请补全频数分布直方图;
    (3) 这次比赛成绩的中位数会落在分数段;
    (4) 若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
  • 18. 如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O,与斜边AB交于点D、E为BC边的中点,连接DE.

    (1) 求证:DE是⊙O的切线;
    (2) 填空:①若∠B=30°,AC=2 ,则DE=

    ②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.

  • 19.

    钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)

  • 20. 我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
    (1) 求购买A,B两种树苗每棵各需多少元?
    (2) 考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
    (3) 某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
  • 21. 阅读下面材料:

    如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.

    观察图象可知:

    ①当x=﹣3或1时,y1=y2

    ②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.

    有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.

    某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

    下面是他的探究过程,请将(2)、(3)、(4)补充完整:

    ⑴将不等式按条件进行转化:

    当x=0时,原不等式不成立;

    当x>0时,原不等式可以转化为x2+4x﹣1>

    当x<0时,原不等式可以转化为x2+4x﹣1<

    ⑵构造函数,画出图象

    设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.

    双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1 ;(不用列表)

    ⑶确定两个函数图象公共点的横坐标

    观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为

    ⑷借助图象,写出解集

    结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

  • 22. 根据要求回答问题:

    (1)

    【问题发现】

    如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,求线段BE与AF的数量关系

    (2)

    【拓展研究】

    在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

    (3) 【问题发现】

    当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

  • 23.

    如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为﹣1和﹣4,且抛物线过原点.

    (1) 求抛物线的解析式;

    (2) 在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

    (3) 若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP , 求 的值.

试题篮