河南省普通高中2016-2017学年中考模拟数学考试试卷(预测二)

修改时间:2021-05-20 浏览次数:1026 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. ﹣ 的倒数是(   )

    A . B . C . D .
  • 2. 用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(   )
    A . 1.2米 B . 1.4米 C . 1.6米 D . 1.8米
  • 3. 在函数y= 中,自变量x的取值范围是(   )
    A . x>2 B . x≥2 C . x<2 D . x≤2
  • 4. 在△ABC中,若∠A的补角是85°,∠B的余角是65°,则∠C的度数为(   )
    A . 60° B . 65° C . 80° D . 85°
  • 5. 估计2 ﹣1的值介于(   )
    A . 4和5之间 B . 5和6之间 C . 6和7之间 D . 7和8之间
  • 6. 计算:(2x23﹣6x3(x3+2x2+x)=(   )
    A . ﹣12x5﹣6x4 B . 2x6+12x5+6x4 C . x2﹣6x﹣3 D . 2x6﹣12x5﹣6x4
  • 7. 在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(   )
    A . (0, B . ,0) C . (0,2) D . (2,0)
  • 8. 如图,转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,认为指向左侧扇形的数字,则点M落在直线y=x的下方的概率为(   )

    A . B . C . D .
  • 9. 如图,点A、B的坐标分别为(2,0)、(0,2),分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交函数y= (k>4)的图象于点C,则△ABC的面积为(   )

    A . k B . C . k﹣2 D . 2 ﹣2
  • 10. 在下列命题中:①平行四边形的一组对边相等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③矩形的两条对角线相等;④四边形相等的四边形是菱形;⑤在直角三角形中,斜边上的中线等于斜边的一半;其逆命题是真命题的是(   )
    A . ①②④ B . ②③④ C . ②④⑤ D . ①③⑤

二、填空题

三、解答题

  • 16. ÷( ),其中x满足x2=2x﹣2017.
  • 17. 某校为了解全校2000名学生每周去图书馆时间的情况,随机调查了其中的100名学生,对这100名学生每周去图书馆的时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周去图书馆的时间在6≤x<8小时的学生人数占20%.根据以上信息及统计图解答下列问题:
    (1) 本次调查属于调查,样本容量是
    (2) 请补全频数分布直方图中空缺的部分;
    (3) 若从这100名学生中随机抽取1名学生,求抽取的这个学生每周去图书馆的时间恰好在8﹣10小时的概率;
    (4) 估计全校学生每周去图书馆的时间不少于6小时的人数.
  • 18. 如图.AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D.

    (1) 证明:FP是⊙O的切线;
    (2) 若四边形OBPD是菱形,证明:FD=ED.
  • 19. 如图,甲乙两人在游泳池A处发现游泳池中的P处有人求救,甲立即跳入池中去救人,速度为1米/秒,乙以3.5米/秒的速度沿游泳池边跑到距A不远处的B处,捡起一个游泳圈再跳入池中去救人,甲游了20秒到达P处,两秒后乙到达P处.若∠PAB与∠PBC互余,且cos∠PBC= ,求乙的游泳速度.

  • 20. 某厂生产一种工具,据市场调查,若按每个工具280元销售时,每月可销售300个,若销售单价每降低1元,每月可多售出2个,据统计,每个工具的固定成本Q(元)与月销售y(个)满足如下关系:

    月销量y(个)

     100

     160

     240

     320

     每个工具的固定成本Q(元)

     96

     60

     40

     30

    (1) 写出月产销量y(个)与销售单价x(元)之间的函数关系式;
    (2) 求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
    (3) 若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
  • 21. 如图,在平面直角坐标系中,矩形ABCD的顶点A、D在坐标轴上,其坐标分别为(2,0),(0,4),对角线AC⊥x轴.

    (1) 求直线DC对应的函数解析式
    (2) 若反比例函数y= (k>0)的图象经过DC的中点M,请判断这个反比例函数的图象是否经过点B,并说明理由.
  • 22. 根据要求回答问题:

    (1)

    发现

    如图1,直线l1∥l2 , l1和l2的距离为d,点P在l1上,点Q在l2上,连接PQ,填空:PQ长度的最小值为.

    (2)

    应用

    如图2,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上,AM=3MD,点N在直线BC上,连接MN,求MN长度的最小值

    (3)

    拓展

    如图3,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值

  • 23.

    如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C在x轴的下方,且OA=OC=5.

    (1) 求抛物线对应的函数解析式;

    (2) 点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;

    (3) 在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.

试题篮