贵州省贵阳市白云区2019年数学中考一模试卷

修改时间:2024-07-13 浏览次数:168 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 如图,在 中,点 边的中点,下列说法不正确的是(   )

    A . B . C . D .
  • 2. 甲、乙、丙、丁四位男同学在中考体育前进行 次立定跳远测试,平均成绩都是 米,方差分别是 ,则成绩最稳定的是(    )
    A . B . C . D .
  • 3. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是(   )
    A . B . C . D .
  • 4. 方程 ax2+bx+c=0(a≠0)有实数根,那么成立的式子是(    )
    A . b2-4ac>0 B . b2-4ac<0 C . b2-4ac≤0 D . b2-4ac≥0
  • 5. 一根弹簧原长12 cm,它所挂的重量不超过10 kg,并且挂重1 kg就伸长1.5 cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是( )
    A . y=1.5(x+12)(0≤x≤10) B . y=1.5x+12(0≤x≤10) C . y=1.5x+12(x≥0) D . y=1.5(x-12)(0≤x≤10)
  • 6. 甲、乙两人进行象棋比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是()

    A . B . C . D .
  • 7. 如图,四边形 是矩形,四边形 是正方形,点 轴的正半轴上,点 轴的正半轴上,点 上,点 在反比例函数 的图象上, ,则正方形 的面积为(    )

    A . B . C . D .
  • 8. 关于x的不等式组 只有 个整数解,则 的取值范围是(    )
    A .   B . C . D .
  • 9. 如图,在正方形网格中,点 都在格点上,则 的值是(    )

    A . B . C . D .
  • 10. 如图, 的直径, 的半径, 于点 的延长线相交于点 . 已知 ,则 的长为(   )

    A . B . C . D .
  • 11. 如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱ALMN,若中间空白部分四边形OPQR恰好是正方形,且▱ALMN的面积为50,则正方形EFGH的面积为(   )

    A . 24 B . 25 C . 26 D . 27

二、填空题

三、解答题

  • 16. 如图,直线 与直线 在同一直角坐标中交于点 .

    (1) 直接写出方程组 的解是.
    (2) 请判断三条直线 ,是否经过同一个点,请说明理由.
  • 17. 某中学参加“创文明城市”书画比赛时,老师从全校 个班中随机抽取了 个班(用 表示),对抽取的作品的数量进行了分析统计,制作了两幅不完整的统计图.回答下列问题:

    (1) 老师采用的调查方式是.(填“普查”或“抽样调查”);
    (2) 请补充完整条形统计图,并计算扇形统计图中 班作品数量所对应的圆心角度数度.
    (3) 请估计全校共征集作品的件数.
  • 18. 如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).

    (参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)

  • 19. 端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.

    根据以上情况,请你回答下列问题:

    (1) 假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?
    (2) 若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
  • 20. 如图,在 中, 边上的中线, 的中点,过点 的平行线交 的延长线于点 ,连接 .

    (1) 求证:
    (2) 若 ,试判断四边形 的形状,并证明你的结论.
  • 21. 兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
    (1) 第一批该款式T恤衫每件进价是多少元?
    (2) 老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出 时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
  • 22. (理论学习)学习图形变换中的轴对称知识后,我们容易在直线 上找到点 ,使 的值最小,如图 所示,根据这一理论知识解决下列问题:

    (1) (实践运用)如图 ,已知 的直径 ,弧 所对圆心角的度数为 ,点 是弧 的中点,请你在直径 上找一点 ,使 的值最小,并求 的最小值.

    (2) (拓展延伸)在图 中的四边形 的对角线 上找一点 ,使 .(尺规作图,保留作图痕迹,不必写出作法).

     

  • 23. 如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.

    (1) 求反比例函数的解析式;
    (2) 在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
  • 24. 在平面直角坐标系中,点 是原点,四边形 是矩形,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 的对应点分别为 .

    (1) 如图①,当点 落在 边上时,求点 的坐标;
    (2) 如图②,当点 落在线段 上时, 交于点 .求点 的坐标;
    (3) 记 为矩形 对角线的交点, 的面积,求 的取值范围(直接写出结果即可).
  • 25.

    如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

    (1) 求抛物线的解析式;

    (2) 过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

    (3) 当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

试题篮