浙江省绍兴市嵊州市2018-2019学年八年级上学期数学期末考试试卷

修改时间:2024-07-13 浏览次数:409 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 如图,一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是( )

    A . 垂线段最短 B . 两点之间线段最短 C . 两点确定一条直线 D . 三角形的稳定性
  • 2. 不等式x+1≥2的解集在数轴上表示正确的是(   )
    A . B . C . D .
  • 3. 长度分别为2,6,x的三条线段能组成一个三角形,x的值可以是(   )
    A . 2 B . 4 C . 6 D . 8
  • 4. 如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为(   )
    A . m> B . m C . m= D . m=
  • 5. 关于 的叙述正确的是(   )
    A . 在数轴上不存在表示 的点 B . +    C . =±2 D . 最接近的整数是3
  • 6. 如图,在平面直角坐标系中,一次函数 经过 两点,则不等式 的解是(   )

    A . B . C . D .
  • 7. 如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是(   )

    A . 25° B . 35° C . 45° D . 75°
  • 8. 一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的进水量与出水量分别是(   )

    A . 5L,3.75L B . 2.5L,5L C . 5L,2.5L D . 3.75L,5L
  • 9. 下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是(   )

    A . 7步 B . 8步 C . 9步 D . 10步
  • 10. 如图,在平面直角坐标系xOy中,A(4,0),B(0,3),点D在x轴上,若在线段AB(包括两个端点)上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个.下列选项中满足上述条件的点D坐标不可以是(   )

    A . (﹣3,0) B . (1,0) C . (5,0) D . (9,0)

二、填空题

  • 11. 命题:“若a=b , 则a2=b2”,写出它的逆命题:
  • 12. 已知不等式﹣4x≤﹣8,两边同时除以“﹣4”得
  • 13. 若将方程x2+2x﹣1=0配方成(x+a)2=h的形式,则a+h的值是
  • 14. 等腰三角形的一边长为3,另一边长为6,则该三角形的周长是
  • 15. 如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面米.

  • 16. 如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是

  • 17. 如图,在平面直角坐标系中,△OAB是等腰直角三角形,∠OAB=90°,已知点A(4,3),点B在第四象限,则点B的坐标是

  • 18. 定义:在平面直角坐标系中,把从点P出发沿横或纵方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的公共自行车,逐渐成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,3),B(6,﹣2),C(0,﹣4),若点M表示公共自行车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标是

  • 19. 已知等边三角形ABC中,AB=4,点D是边AB的中点,点E是边BC上的动点,连接DE,将△BDE沿直线DE翻折,点B的对应点为B′,当直线B′E与直线AC的夹角为30°时,BE的长度是

  • 20. 已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于 AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=

三、解答题

  • 21.   
    (1) 解不等式组:  
    (2) 解方程:2x2﹣4x﹣3=0.
  • 22. 在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).

    (1) 请你根据题意在图中的网格平面内作出平面直角坐标系.
    (2) 请画出△ABC关于y轴对称的△A1B1C1
  • 23. “和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BCx轴.请根据图象提供的信息解答下列问题:

    (1) 当0≤x≤10,求y关于x的函数解析式;
    (2) 求C点的坐标.
  • 24. 如图,在Rt△ACB中,∠ACB=90º,点D是AB的中点,点E是CD的中点,过C作CF∥AB交AE的延长线于点F,连BF.

    (1) 求证:△ADE≌△FCE;
    (2) 若∠DCF=120º,DE=2,求BC的长.
  • 25. 已知:如图1,在平面直角坐标系中,一次函数y= x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.

    (1) 求点A,B的坐标.
    (2) 如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.
    (3) 若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得SCPQ=2SDPQ , 若存在,请求出对应的点Q坐标;若不存在,请说明理由.

试题篮