浙教版八年级下册第4章 4.4平行四边形的判定 同步练习

修改时间:2017-12-23 浏览次数:1332 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 下列条件中,能确定一个四边形是平行四边形的是(  )

    A . 一组对边相等 B . 一组对角相等 C . 两条对角线相等 D . 两条对角线互相平分
  • 2. 四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(  )

    A . AB∥DC,AD∥BC B . AB=DC,AD=BC C . AO=CO,BO=DO D . AB∥DC,AD=BC
  • 3. 已知四边形ABCD,下列说法正确的是(  )
    A . 当AD=BC,AB∥DC时,四边形ABCD是平行四边形 B . 当AD=BC,AB=DC时,四边形ABCD是平行四边形 C . 当AC=BD,AC平分BD时,四边形ABCD是矩形 D . 当AC=BD,AC⊥BD时,四边形ABCD是正方形
  • 4. 能判定四边形ABCD是平行四边形的题设是(  )
    A . AD=BC,AB∥CD B . ∠A=∠B,∠C=∠D C . AB=BC,AD=DC D . AB∥CD,CD=AB
  • 5. 如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为(   )

    A . 6 B . 12 C . 20 D . 24
  • 6. 下列条件不能判定四边形ABCD是平行四边形的是(   )
    A . AB∥CD,AD∥BC B . AD=BC,AB=CD   C . AB∥CD,AD=BC D . ∠A=∠C,∠B=∠D
  • 7. 若以A(﹣0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在(   )
    A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
  • 8. 能判定四边形ABCD为平行四边形的题设是(  )

    A . AB∥CD,AD=BC B . ∠A=∠B,∠C=∠D  C . AB=CD,AD=BC D . AB=AD,CB=CD
  • 9. 能判定四边形ABCD为平行四边形的条件是(  )

    A . AB∥CD,AD=BC  B . ∠A=∠B,∠C=∠D C . AB∥CD,∠C=∠A D . AB=AD,CB=CD
  • 10. 不能判断四边形ABCD是平行四边形的是(  )

    A . AB=CD,AD=BC B . AB=CD,AB∥CD C . AB=CD,AD∥BC D . AB∥CD,AD∥BC
  • 11. 在连接A地与B地的线段上有四个不同的点D,G,K,Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(   )
    A . B . C . D .
  • 12. 下列命题中,是真命题的是(   )
    A . 两条对角线互相平分的四边形是平行四边形 B . 两条对角线相等的四边形是矩形 C . 两条对角线互相垂直的四边形是菱形 D . 两条对角线互相垂直且相等的四边形是正方形
  • 13. 如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是(   )

    A . OA=OC,AD∥BC   B . ∠ABC=∠ADC,AD∥BC C . AB=DC,AD=BC   D . ∠ABD=∠ADB,∠BAO=∠DCO
  • 14. 设计一张折叠型方桌子如图,若AO=BO=50cm,CO=DO=30cm,将桌子放平后,要使AB距离地面的高为40cm,则两条桌腿需要叉开的∠AOB应为(   )

    A . 60° B . 90° C . 120° D . 150°

二、填空题

  • 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意的观点,理由是 

  • 16.

    如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则 秒时四边形ADFE是平行四边形.

  • 17.

    如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为 


  • 18.

    如图,已知▱ABCD的对角线AC、BD相交于点O,点E是CD的中点,若BD=12cm,△DOE的周长为15cm,则▱ABCD的周长为 cm.


  • 19. 如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为

三、解答题

  • 20. 已知:如图,在▱ABCD中,M、N是对角线BD上的两点,且BM=DN.

    求证:四边形AMCN是平行四边形.

  • 21. 如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?

四、综合题

  • 22. 如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.

    (1) 证明DE∥CB;
    (2) 探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
  • 23. 已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.

    (1) 求证:四边形EBFD是平行四边形;
    (2) 若AD=AE=2,∠A=60°,求四边形EBFD的周长.
  • 24.

    如图,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

    (1) AC的长是,AB的长是

    (2) 在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.

    (3) 四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

    (4) 当t为何值,△BEF的面积是2

试题篮