试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
广东省湛江第一中学2017-2018学年高二下学期理数期中考试试卷
已知数列
的前n项和
.
(1)、
计算
,
,
,
;
(2)、
猜想
的表达式,并用数学归纳法证明你的结论.
举一反三
某人为了观看2014年世界杯,在2007年1月1日到银行存入a元定期储蓄,若年利率为P,且保持不变,并约定每年到期存款均自动转为新的一年定期,到2013年年底将所有存款和利息全部取回,则可取回的钱的总数(元)为( )
把正奇数数列{2n﹣1}的各项从小到大依次排成如下三角形状数表记M(s,t)表示该表中第s行的第t个数,则表中的奇数2007对应于.( )
对任意正整数n,设a
n
是方程x
2
+
=1的正根.求证:
古希腊数学家把1,3,6,10,15,21…叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为{#blank#}1{#/blank#}.
我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为{#blank#}1{#/blank#}日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)
定义
为
个正数
,
,
,
的“均倒数”,若已知数列
的前
项的“均倒数”为
,又
,则
( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册