试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:模拟题
难易度:容易
若曲线C
1
:y
2
=2px(p>0)的焦点F恰好是曲线
的右焦点,且C
1
与C
2
交点的连线过点F,则曲线C
2
的离心率为( )
A、
B、
C、
D、
举一反三
抛物线
的焦点坐标是( )
已知双曲线C
1
:
﹣
=1(a>0,b>0)的离心率为2,若抛物线C
2
:x
2
=2py(p>0)的焦点到双曲线C
1
的涟近线的距离是2,则抛物线C
2
的方程是( )
过双曲线的一个焦点F
2
作垂直于实轴的直线,交双曲线于P、Q,F
1
是另一焦点,若∠PF
1
Q=
,则双曲线的离心率e等于( )
设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
已知点A(1,2),过点P(5,﹣2)的直线与抛物线y
2
=4x相交于B,C两点,则△ABC是( )
已知双曲线C:
﹣
=1的右焦点为F,过点F向双曲线的一条渐进线引垂线,垂足为M,交另一条渐近线于N,若2
=
,则双曲线的离心率{#blank#}1{#/blank#}.
返回首页
相关试卷
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
2025高考一轮复习(人教A版)第四十九讲 二项分布与超几何分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册