题型:填空题 题类:常考题 难易度:容易
人教A版高中数学必修三 第二章2.3-2.3.2两个变量的线性相关 同步训练
印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(Ⅰ)为了评价两种模型的拟合效果,完成以下任务.
(i)完成下表(计算结果精确到0.1);
印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 (1) |
| 2.4 | 2.1 |
| 1.6 |
残值 (1) |
| 0 | ﹣0.1 |
| 0.1 | |
模型乙 | 估计值 (2) |
| 2.3 | 2 | 1.9 |
|
残值 (2) |
| 0.1 | 0 | 0 |
|
(ii)分别计算模型甲与模型乙的残差平方和Q1和Q2 , 并通过比较Q1 , Q2的大小,判断哪个模型拟合效果更好.
(Ⅱ)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(Ⅰ)中拟合效果较好的模型计算印刷单册书的成本)
气温/℃ | 18 | 13 | 10 | -1 |
用电量/千瓦时 | 24 | 34 | 38 | 64 |
由表中数据可得回归直线方程 ,其中 。预测当气温为-4℃时,用电量的千瓦时数约为( )
表1,空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
气温x(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
由表中数据得线性回归方程 ,预测当气温为-4℃时用电量度数为( )
试题篮