试题 试卷
题型:填空题 题类:常考题 难易度:普通
人教A版高中数学必修二2.3.3直线与平面垂直的性质课时训练2
⑴直线DE∥平面ABC.
⑵直线DE⊥平面VBC.
⑶DE⊥VB.
⑷DE⊥AB.
如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.
(1)求证:EF∥平面PBC;
(2)求E到平面PBC的距离.
如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.
试题篮