题型:解答题 题类:常考题 难易度:普通
吉林省扶余市第一中学2016-2017学年高二下学期文数期末考试试卷
班级与成绩列联表
优 秀 | 不优秀 | |
甲 班 | 10 | 35 |
乙 班 | 7 | 38 |
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某高校《统计》课程的教师随机给出了选该课程的一些情况,具体数据如下:
非统计专业 | 统计专业 | |
男 | 13 | 10 |
女 | 7 | 20 |
为了判断选修统计专业是否与性别有关,根据表中数据,得 ,因为 ,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为( )
某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:
(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
是否近视 年级名次 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:
= .
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
则至少有{#blank#}1{#/blank#} 的把握认为喜爱打篮球与性别有关.
(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
参考公式:K2=
p(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.445 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
试题篮