题型:单选题 题类:常考题 难易度:容易
高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.1离散型随机变量及其分布列(包括2.1.1离散型随机变量,2.1.2离散型随机变量的分布列)
X | -1 | 0 | 1 |
P | 1-2q | q2 |
则q等于( )
组数 | 分组 | 认同人数 | 认同人数占 本组人数比 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
日车流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
频率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
| 年轻人 | 非年轻人 | 合计 |
经常使用共享单车用户 |
|
| 120 |
不常使用共享单车用户 |
|
| 80 |
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
试题篮