题型:单选题 题类:常考题 难易度:普通
高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | m |
根据上表可得回归方程=bx+a中b为9.4,据此模型预报广告费用为6万元时,销售额为65.5,则a,m为( )
表1
停车距离d(米) | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] |
频数 | 26 | a | b | 8 | 2 |
表2
平均每毫升血液酒精含量x毫克 | 10 | 30 | 50 | 70 | 90 |
平均停车距离y米 | 30 | 50 | 60 | 70 | 90 |
已知表1数据的中位数估计值为26,回答以下问题.
(Ⅰ)求a,b的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表2的数据计算y关于x的回归方程 ;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归直线 的斜率和截距的最小二乘估计分别为 , .)
年份(第 年) | 1 | 2 | 3 | 4 | 5 |
人数( 人) | 37 | 38 | 49 | 45 | 56 |
参考公式: , .
第天 | 1 | 4 | 9 | 16 | 25 | 36 | 49 |
高度 | 0 | 4 | 7 | 9 | 11 | 12 | 13 |
作出这组数据的散点图发现:与(天)之间近似满足头系式 , 其中 , 均为大于0的常数.
试题篮