如图1,已知在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)设△COB沿x轴正方向平移t(0<t≤3)个单位长度时,△COB与△CDB重叠部分的面积为S,求S与t之间的函数关系式,并指出t的取值范围;
考生请注意:下面的(3),(4),(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记哟!
(3)点P是x轴上的一个动点,过点P作直线l∥AC交抛物线与点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;
(4)设点Q是y轴右侧抛物线上异于点B的点,过点Q做QP∥x轴交抛物线于另一点P,过P做PH⊥x轴,垂足为H,过Q做QG⊥x轴,垂足为G,则四边形QPHG为矩形.试探究在点Q运动的过程中矩形QPHG能否成为正方形?若能,请直接写出符合条件的点Q的坐标;若不能,请说明理由;
(5)试探究,在y轴右侧的抛物线上是否存在一点Q,使△QDC是等腰三角形?若存在,请直接写出符合条件的点Q坐标;若不存在,请说明理由.