试题 试卷
题型:证明题 题类:常考题 难易度:普通
广东省广州市越秀区2016-2017学年八年级下学期数学期末考试试卷
四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.①请直接写出AE的长度;②当DE⊥CF时,试求出CF长度.(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.探究:当∠B与∠EPC满足什么关系时,成立?并证明你的结论.
如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是{#blank#}1{#/blank#} .
已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.
(1)求证:△ABE≌△CDF;
(2)连接EF、BD,求证:EF与BD互相平分.
在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.
试题篮