试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年北京市海淀区高考数学查漏补缺试卷
(Ⅰ)求证:BD∥平面EFG;
(Ⅱ)求直线AB与平面EFG的成角的正弦值;
(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.
如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.
(Ⅰ)证明:直线CE∥平面PAB;
(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.
(I)若线段PC上存在一点M,使得直线PA∥平面MBD,试确定M点的位置,并给出证明;
(II)在第(I)问的条件下,求三棱锥C﹣DMB的体积.
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.
(Ⅰ)求证:面ADE⊥面 BDE;
(Ⅱ)求直线AD与平面DCE所成角的正弦值..
试题篮