试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年山东省泰安市高考数学二模试卷(理科)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当m=1时,若方程f(x)= x2+ac在区间[ ,+∞)上有唯一的实数解,求实数a的取值范围;
(Ⅲ)当m>0时,若对于区间[1,2]上的任意两个实数x1 , x2 , 且x1<x2 , 都有|f(x1)﹣f(x2)|<x22﹣x12成立,求实数m的最大值.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1 , x2 , 求证;f(x1)+f(x2)<e.
(Ⅰ)求函数f(x)单调区间;
(Ⅱ)若a=﹣1,求证:当x>1时,f(x)< x3 .
试题篮