试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:常考题
难易度:困难
函数恒成立问题+++++++++++++3
当x∈(0,+∞)时,不等式c
2
x
2
﹣(cx+1)lnx+cx≥0恒成立,则实数c的取值范围是
.
举一反三
若不等式
在
恒成立,则实数a的最小值为{#blank#}1{#/blank#}
已知定义域为R的函数f(x)=
是奇函数,
设常数a>0,若9x+
≥a
2
﹣4对一切正实数x成立,则a的取值范围是( )
已知函数f(x)=
,若不等式f(﹣2m
2
+2m﹣1)+f(8m+e
k
)>0(e是自然对数的底数),对任意的m∈[﹣2,4]恒成立,则整数k的最小值是( )
[
选修
4-5
:不等式选讲
]
设函数f(x)=|x+
|+|x﹣2m|(m>0).
设函数
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册