试题 试卷
题型:综合题 题类:常考题 难易度:普通
待定系数法求二次函数解析式++++++2
如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1 , y1),M2(x2 , y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
试题篮