试题 试卷
题型:解答题 题类:常考题 难易度:普通
与圆有关的比例线段++++++236
(Ⅰ)求证:A、E、F、D四点共圆,并求∠BFC的大小;
(Ⅱ)求证:2BF•BD=CF•CE.
如图,P为☉O外一点,过P点作☉O的两条切线,切点分别为A,B.过PA的中点Q作割线交☉O于C,D两点.若QC=1,CD=3,则PB={#blank#}1{#/blank#}.
如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
如图,AB是圆的直径,弦CD与AB相交于点E , BE=2AE=2,BD=ED , 则线段CE的长为{#blank#}1{#/blank#}.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.
如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.
试题篮