试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
利用导数研究函数的极值+++540
函数f(x)=ax
3
+bx
2
+cx在点x
0
处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求:
(1)、
x
0
的值;
(2)、
a,b,c的值;
(3)、
f(x)的极大值.
举一反三
已知函数f(x)=x
3
+2bx
2
+cx+1有两个极值点x
1
、x
2
, 且x
1
∈[-2,-1],x
2
∈[1,2],则f(-1)的取值范围是 ( )
已知实数a,b,c,d成等比数列,且对函数
, 当x=b时取到极大值c,则ad等于( )
已知函数F(x)=(
)
2
+(a﹣1)
+1﹣a有三个不同的零点x
1
, x
2
, x
3
(其中x
1
<x
2
<x
3
),则(1﹣
)
2
(1﹣
)(1﹣
)的值为( )
已知函数
.
已知函数
.
已知函数
在
上可导且
,其导函数
满足
,对于函数
,下列结论错误的是( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册