试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年四川省宜宾市高考数学二诊试卷(理科)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1 , 焦点为F2;以F1 , F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
当m=1时,求椭圆C2的方程;
(Ⅰ)当k=﹣ ,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.
试题篮