试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:模拟题
难易度:普通
2016年陕西省商洛市高考数学模拟试卷(理科)
经过圆x
2
+y
2
=r
2
上一点M(x
0
, y
0
)的切线方程为x
0
x+y
0
y=r
2
. 类比上述性质,可以得到椭圆
+
=1类似的性质为:经过椭圆
+
=1上一点P(x
0
, y
0
)的切线方程为
.
举一反三
已知
, 观察下列式子:
,
,
, 类比有
, 则a是( )
已知面积为S的凸四边形中,四条边长分别记为a
1
, a
2
, a
3
, a
4
, 点P为四边形内任意一点,且点P到四边的距离分别记为h
1
,
h2
, h
3
, h
4
, 若
=
=
=
=k,则h
1
+2h
2
+3h
3
+4h
4
=
类比以上性质,体积为y的三棱锥的每个面的面积分别记为S
l
, S
2
, S
3
, S
4
, 此三棱锥内任一点Q到每个面的距离分别为H
1
, H
2
, H
3
, H
4
, 若
=
=
=
=K,则H
1
+2H
2
+3H
3
+4H
4
=( )
观察下列各式:a+b=1,a
2
+b
2
=3,a
3
+b
3
=4,a
4
+b
4
=7,a
5
+b
5
=11,…,则a
10
+b
10
={#blank#}1{#/blank#}.
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S
1
, S
2
, S
3
, S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
已知命题:平面上一矩形ABCD的对角线AC与边AB、AD所成的角分别为
、
(如图1),则
.用类比的方法,把它推广到空间长方体中,试写出相应的一个真命题并证明.
由直线与圆相切时,圆心与切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册