试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:真题
难易度:普通
2014年高考理数真题试卷(广东卷)
如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)、
证明:CF⊥平面ADF;
(2)、
求二面角D﹣AF﹣E的余弦值.
举一反三
m是一条直线,α,β是两个不同的平面,以下命题正确的是( )
如图,四棱锥P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC=
BC,求二面角E﹣AC﹣P的余弦值.
已知等边三角形PAB的边长为4,四边形ABCD为正方形,平面PAB⊥平面ABCD,E,F,G,H分别是线段AB,CD,PD,PC上的点.
如图,在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
如图,四棱锥
中,底面
是边长为2的正方形,
,且
,
为
中点.
如图,在三棱柱
中,
为
的中点,平面
平面
.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册