试题 试卷
题型:单选题 题类:真题 难易度:普通
2012年高考理数真题试卷(浙江卷)
在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
①若A∈α,B∈α,C∈AB,则C∈α;
②若α∩β=l,b⊂α,c⊂β,b∩c=A,则A∈l;
③A,B,C∈α,A,B,C∈β且A,B,C不共线,则α与β重合;
④任意三点不共线的四点必共面.
其中真命题的个数是( )
如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( )
如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
试题篮