试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(I)求证:BM∥平面ADEF;
(Ⅱ)求证:平面BDE⊥平面BEC.
在四棱锥P﹣ABCD中,AB∥CD,AB=DC=1,BP=BC= , PC=2,AB⊥平面PBC,F为PC中点.
(Ⅰ)求证:BF∥平面PAD;
(Ⅱ)求证:平面ADP⊥平面PDC;
(Ⅲ)求VP﹣ABCD .
如图,AB是⊙O的直径,点P是⊙O圆周上异于A,B的一点,AD⊥⊙O所在的平面PAB,四边形ABCD是边长为2的正方形,连结PA,PB,PC,PD.
(1)求证:平面PBC⊥平面PAD;
(2)若PA=1,求四棱锥P﹣ABCD的体积.
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1
(Ι)证明:AD∥平面EBC;
(II)求三棱锥E﹣ABD的体积.
①D1P∥平面A1BC1;②D1P⊥BD;③平面PDB1⊥平面A1BC1;④三棱锥A1﹣BPC1的体积不变.则其中所有正确的命题的序号是{#blank#}1{#/blank#}.
试题篮