试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,梯形ABCD所在平面与以AB为直径的圆所在平面垂直,O为圆心,AB∥CD,∠BAD=90°,AB=2CD.若点P是⊙O上不同于A,B的任意一点.
(Ⅰ)求证:BP⊥平面APD;
(Ⅱ)设平面BPC与平面OPD的交线为直线l,判断直线BC与直线l的位置关系,并加以证明;
(Ⅲ)求几何体DOPA与几何体DCBPO的体积之比.
如图,在三棱锥中P﹣ABC中,PA=PB=AB=BC,∠PBC=90°D为AC的中点,AB⊥PD
(I )求证:BC丄平面PAB
(Ⅱ)如果三棱锥P﹣BCD的体积为3,求PA.
(Ⅰ)证明:A′O⊥平面BCDE;
(Ⅱ)求O到平面A′DE的距离.
①m⊂α,l∩α=A,点A∉m,则l与m不共面;
②l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β;
④若l∥α,m∥β,α∥β,则l∥m.
试题篮