试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,在三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,∠ABC=90°,AB=2,BC=•=1,D是棱A1B1上一点.
(Ⅰ)证明:BC⊥AD;
(Ⅱ)求三棱锥B﹣ACD的体积.
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
已知四边形ABCD是矩形,AB=1,AD=2,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱锥C﹣PFD的体积;
(3)在棱PA上是否存在一点G,使得EG∥平面PFD,若存在,请求出的值,若不存在,请说明理由.
试题篮