试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,三棱柱ABC﹣A1B1C1的底面是边长为4正三角形,AA1⊥平面ABC,AA1=2 , M为A1B1的中点.
(Ⅰ)求证:MC⊥AB;
(Ⅱ)在棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,确定点P的位置;若不存在,说明理由.
(Ⅲ)若点P为CC1的中点,求二面角B﹣AP﹣C的余弦值.
(Ⅰ) 求证:直线EA⊥平面PAB;
(Ⅱ) 求直线AE与平面PCD所成角的正切值.
如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.
试题篮